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1 Introduction

There are several reasons to study the underlying structure of topological string theory.

On the one hand, it provides a rather versatile tool to compute certain quantities from full

string theory (to whose chiral sector the topological theory is equivalent). Furthermore,

though being far from trivial, topological string theory provides a more clear-cut arena

to identify fundamental relations, explicify intuitions, and to structure them in a precise

and rigorous language. Such a well-defined setting is important for at least three reasons:

it enhances computational prowess in concrete problems; it serves as a solid and reliable

platform from which to generalise to full string theory and try to arrive at new results and

insights there; and finally, topological string theory forms a valuable bilaterally perme-

able junction to pure mathematics, both making new techniques available to physics and

providing mathematics with unexpected structures and relations to investigate and enjoy.

This is true in particular for closed topological string theory and its relation to enu-

merative and algebraic geometry, e. g. counting instantons by Gromov-Witten invariants.

In more recent years, also much progress has been made in the open sector, describing

D-branes and their spectra. Their topological properties are encoded in D-brane cate-

gories [3, 8, 33, 41] whose objects and morphisms describe branes and open strings, respec-

tively. Such categories are endowed with very useful and very deep structure which is also

at the heart of the homological mirror symmetry programme [27].

More specifically, in the present paper we will be concerned with the boundary sector

of the topological B-twist [9, 42, 44] of certain N = 2 superconformal theories that describe

the stringy regime in Kähler moduli space for a wide range of type IIB compactifications.

The ring of chiral primary fields on the boundary is equivalent to the BRST cohomology

with basis {ψi} of the twisted theory. As a consequence, amplitudes Qi1...in with integrated

descendants
∫
ψ

(1)
i =

∫
[G−1dz + Ḡ−1dz̄, ψi] that are computed in the topological sector,

Qi1...in = (−1)|ψi1
|+...+|ψin |+n

〈
ψi1ψi2P

∫
ψ

(1)
i3
. . .

∫
ψ

(1)
in−1

ψin

〉
disk

, (1.1)
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allow [4] to compute effective F-term superpotentials of the full string theory:

Weff =
∑

n≥2

1

n+ 1
Qi0i1...inui0ui1 . . . uin

where the parameters ui have the opposite Grassmann parity to the fields ψi, and where

〈ψiψj〉disk is the 2-point-correlator of open topological field theory on the disk, also known

as the topological metric.

It was shown in [18, 19] that BRST symmetry implies that the amplitudes (1.1) coming

from any N = 2 topological conformal field theory obey a family of constraint conditions

that can be viewed as a pendant of the bulk WDVV equations in the boundary sector.

Mathematically these constraints endow the open string spaces in the category of D-branes

with the structure of A∞-algebras. Moreover, it follows from the Ward identities that the

amplitudes (1.1) have a cyclic symmetry, and that 2-point-correlators 〈ψiψj〉 are constant

under deformations. As twisted topological conformal field theories are always cohomolog-

ical field theories, this means that any N = 2 open topological string theory is naturally

endowed with the structure of a cyclic, unital and minimal A∞-category. (See the next

section for the precise definitions.)

Starting from a Segal-type definition of a topological conformal field theory the same

structure was also obtained, and indeed shown to be equivalent with the definition itself,

in [7, 31]. In this sense we may identify open topological string theory with cyclic, unital

and minimal A∞-categories, and this identification is what we shall exploit in the present

paper. Emphasising the abstract algebraic A∞-structure of open topological string theory

is not unlike allowing the most general characterisation of string vacua: the latter may

be any abstract conformal field theory, irrespective of whether it has a known Lagrange

formulation or a direct spacetime interpretation. This opens the door to all the techniques

and insights of conformal field theory. Similarly, by stressing the general A∞-structure of

open topological string theory one gains a deeper conceptual understanding. But on the

other hand, we will see that the correct A∞-structure can be constructed explicitly, and

this goes hand in hand with a computation of amplitudes and effective superpotentials

“from first principles”, i. e. from the defining A∞-structure.

The prototype example of a D-brane category is the one that describes branes in non-

linear sigma models with a compact Calabi-Yau variety X as its target space. It is by

now rather well understood [3, 8, 16, 41] that the B-type boundary sector of such models

is given by the bounded derived category D(X) of coherent sheaves on X. As befits a

cohomological field theory, this category is the cohomology category of a DG category

P (X).1 Thus one may construct an A∞-structure on D(X) induced from P (X) as recalled

in the next section, to wit, D(X) is then a “minimal model” of P (X). Furthermore such

a construction can be guaranteed to be cyclic with respect to the topological metric. The

1If K(X) denotes the standard DG category of complexes of coherent sheaves on X, an object P in

K(X) is called h-projective iff HomH0(K(X))(P, A) = 0 for all acyclic A in K(X). One choice for P (X) is

then the full subcategory of all h-projectives in K(X).

– 2 –



J
H
E
P
0
7
(
2
0
0
9
)
0
0
5

reason is that the latter is induced from the pairing

〈α, β〉σ =

∫

X
Ω ∧ tr(αβ) (1.2)

where Ω is a holomorphic top form and α, β are observables in the large volume limit.

Hence 〈 · , · 〉σ is cyclic already off-shell, and this property will be inherited to cohomology.

As a consequence, higher A∞-products and effective superpotentials may in principle be

computed rather straighforwardly for such non-linear sigma models [2].

Another interesting class of theories are N = 2 supersymmetric Landau-Ginzburg

models. It has been argued in [20–22, 26, 37, 43] how to obtain conformal field theories

as their infra-red limit in the renormalisation group flow. This is particularly important

when applied to Gepner models, which may then be alternatively described by certain

Landau-Ginzburg theories. Also, such theories are equivalent to non-linear sigma models

on hypersurfaces in projective space both in the bulk [45] and boundary [16, 40] sector.

The boundary sectors of B-twisted Landau-Ginzburg models with potential W (and

with flat target spaces) are given by the D-brane category MF(W ) of matrix factorisations

of W [5, 24, 34]. If the Landau-Ginzburg model has N chiral superfields x1, . . . , xN , the ob-

jects of MF(W ) are pairs of square matrices (d0, d1) with entries in C[X] := C[x1, . . . , xN ]

that factorise the potential W . By combining d0 and d1 into D := ( 0 d1
d0 0 ), this condition

precisely means D2 = W ·1. Given two such matrix factorisations D and D′ of size 2r and

2r′, respectively, we consider the space V2r,2r′ of polynomial (2r×2r′)-matrices. This space

is naturally Z2-graded where block-diagonal matrices have degree 0 and off-block-diagonal

matrices have degree 1. It follows from the matrix factorisation condition that the map

dDD′ ∈ End(V2r,2r′) defined on homogeneous φ by

dDD′(φ) = D′φ− (−1)|φ|φD

is a differential, and one finds that it is the BRST operator on the boundary. Thus the

morphism spaces Hom(D,D′) of MF(W ) are given by the cohomology HdDD′ (V2r,2r′), mod-

elling open string states between the branes described by D and D′.

It is clear from this definition that MF(W ) is the cohomology category of the off-

shell DG category DG(W ). The objects of the latter are also matrix factorisations, but

HomDG(W )(D,D
′) is equal to the full space V2r,2r′ before taking cohomology with respect

to the differential dDD′ .

In order to establish that matrix factorisations of Landau-Ginzburg models are not

only examples of mere open topological field theories given by MF(W ), but that they also

have the full structure of open topological string theory, it is natural to try to obtain the

proper A∞-structure on MF(W ) from the one on DG(W ). However, the naive construction

of a generic minimal model quickly faces a serious problem. This arises because the correct

A∞-structure on MF(W ) must be cyclic with respect to the topological metric which in

the case of Landau-Ginzburg models does not have nice properties off-shell. Explicitly it

was obtained in [17, 25] by a boundary generalisation of the path integral derivation of [42]

as the residue [14]

〈φ1, φ2〉
D
LG =

1

(2πi)N

∮
str(∂1D . . . ∂NDφ1φ2)

∂1W . . . ∂NW
dx1 ∧ . . . ∧ dxN (1.3)

– 3 –
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for a brane D. One may easily check that on cohomology (1.3) is well-defined and cyclic

with respect to ordinary mutliplication, i. e. 〈φ1, φ2φ3〉LG = ±〈φ2, φ3φ1〉LG, thus completing

the structure of open topological field theory on MF(W ).2 However, the pairing (1.3) is

not cyclic off-shell, i. e. in the category DG(W ). As will be discussed in more detail in the

next section, this makes it much more difficult to construct an A∞-structure on MF(W )

whose higher products are cyclic with respect to the topological metric. But only cyclic

products would allow to compute the amplitudes (1.1) or effective superpotentials, and

only with cyclic products can matrix factorisations be endowed with the full structure of

open topological string theory.3

The failure of (1.3) to be a “good” pairing off-shell calls for a more sophisticated

method to find the correct minimal A∞-structure on MF(W ). The construction that will

be employed in the present paper crucially involves a reformulation of A∞-theory in terms

of non-commutative geometry in the sense of Kontsevich [15, 28, 29] that was first used for

topological string theory in [35]. This approach effectively condenses all amplitudes and

the topological metric into a single differential and a non-commutative symplectic form,

thereby organising the complicated A∞-conditions in a clever way. This allows to discern

very clearly in which precise way a generic (but easily constructible) minimal model fails to

be cyclic and then “correct” it. As we will see in the body of the paper, this construction

is entirely explicit and can be completely automatised.

But not only can the treatment via non-commutative geometry provide cyclic A∞-

products for a given pairing: without any additional effort, this approach allows to find

and construct all pairings with respect to which cyclic minimal models exist. In the case

of Landau-Ginzburg models this means that one does not have to assume the topological

metric (1.3) but one can rather recover it as one of the possible cyclic pairings. The fact

that symplectic forms on a fixed space are all the same up to a choice of basis makes cyclic

pairings essentially unique. This may be viewed as an alternative and path integral free

derivation of the topological metric (1.3) from first principles.

In the present paper, we explain in detail the general construction of all cyclic minimal

models for an arbitrary A∞-algebra, apply this method to Landau-Ginzburg models, and

illustrate the recovery of the topological metric and the computation of effective superpo-

tentials with a number of examples.

In section 2, we start by recalling the basics of A∞-algebras,4 how they appear in the

context of non-commutative geometry, and then go on to use this description to arrive

at a classification result of cylic minimal models. We stress the explicit nature of this

construction by phrasing it as a computer-friendly algorithm (cf. the summary on page 13).

After this general discussion, in section 3 we specialise to the case of Landau-Ginzburg

models and show how to apply the algorithm to matrix factorisations. Finally, we work

out a few examples to recover the topological metric and compute effective superpotentials.

2In all examples considered one finds that 〈 · , · 〉LG is non-degenerate, but a general proof of non-

degeneracy has not been published.
3To ensure that the A∞-structure is unital does not turn out to be a problem.
4Any sufficiently small A∞-category A can be “summed up” to give an A∞-algebra A =

L

i,j∈ObA HomA(i, j) from which A can be recovered by keeping track of the sectors HomA(i, j). Therefore

we can avoid the heavier notation of A∞-categories.

– 4 –
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2 A∞-algebras

In this section we discuss relevant parts of the general theory of A∞-algebras, and we

explain how to construct all cyclic minimal models for a given A∞-algebra. Subsection 2.1

collects standard definitions and results (see also e. g. [12, 15, 35]) as well as detailed proofs

for later use. Subsection 2.2 offers a discussion of cyclicity and ends with an explicit

step-by-step construction of cyclic minimal models.

2.1 Basic A∞-theory

Definition. An A∞-algebra A is a (Z- or Z2-) graded vector space together with linear

maps rn : A[1]⊗n → A[1] of degree +1 for all n ≥ 1 such that

∑

i≥0,j≥1,

i+j≤n

rn−j+1 ◦
(1⊗i ⊗ rj ⊗ 1⊗(n−i−j)

)
= 0 (2.1)

where A[1] denotes the vector space A with the suspended grading, i. e. if A decomposes

into its homogeneous components as A =
⊕

iAi, then A[1]i = Ai+1.

The first few A∞-conditions from (2.1) read

n = 1 : r1 ◦ r1 = 0 ,

n = 2 : r1 ◦ r2 + r2 ◦ (r1 ⊗ 1) + r2 ◦ (1⊗ r1) = 0 ,

n = 3 : r2 ◦ (r2 ⊗ 1) + r2 ◦ (1⊗ r2)

+ r1 ◦ r3 + r3 ◦ (r1 ⊗ 1⊗2 + 1⊗ r1 ⊗ 1+ 1⊗2 ⊗ r1) = 0 , (2.2)

and when applied to elements in A[1]⊗n these relations may pick up sign factors according

to the Koszul rule, e. g. (1 ⊗ r1)(a ⊗ b) = (−1)eaa ⊗ r1(b). Here and below ã denotes the

suspended degree of a in A[1] which we will often simply refer to as the “tilde degree” to

distinguish it from the degree |a| = ã+ 1 of a in A.

Defining the suspension map σ : A→ A[1] as the unique map of suspended degree −1

with σ(a) = a for all a ∈ A, one may alternatively characterise A∞-algebras in terms of

the maps mn := σ−1 ◦ rn ◦ σ
⊗n : A⊗n → A. Then the relations (2.2) say that m1 = r1 is a

differential with respect to the product m2, this product is associative up to a homotopy

given bym3, and the remaining conditions in (2.1) state that in general mn is associative up

to a possibly non-zero homotopy mn+1 for all n ≥ 2. This explains the name A∞-algebra

as the “associativity up to homotopy” may go on infinitely (though in many examples only

finitely many of the higher products do not vanish).

It follows that any differential graded (DG) algebra is in particular an A∞-algebra with

mn = 0 for all n ≥ 3. The reason why the products rn and not mn are used in this paper

is that they reduce the amount of sign factors one has to deal with, and they also seem

more natural in the reformulation in terms of non-commutative geometry to be discussed

and used extensively below.

Definition. An A∞-algebra (A, rn) is minimal iff r1 = 0. It is unital iff there exists

e ∈ A[1]−1 such that r2(e ⊗ a) = −a, r2(a ⊗ e) = (−1)eaa for all a ∈ A[1], and all other

– 5 –



J
H
E
P
0
7
(
2
0
0
9
)
0
0
5

products rn vanish if applied to a tensor product involving e. A is cyclic with respect to a

bilinear form 〈 · , · 〉 on A iff

〈a0, rn(a1 ⊗ . . .⊗ an)〉 = (−1)ea0(ea1+...+ean)〈a1, rn(a2 ⊗ . . .⊗ an ⊗ a0)〉 (2.3)

for all homogeneous elements ai ∈ A.

Definition. An A∞-morphism between A∞-algebras A and A′ is a family of linear maps

Fn : A[1]⊗n → A′[1] of degree 0 for all n ≥ 1 such that

n∑

p=1

∑

1≤i1,...,ip≤n,

i1+...+ip=n

rA
′

p ◦
(
Fi1 ⊗ . . .⊗ Fip

)
=

∑

i≥0,j≥1,
i+j≤n

Fn−j+1 ◦
(1⊗iA ⊗ rAj ⊗ 1⊗(n−i−j)

A

)
. (2.4)

(Fn) is an A∞-isomophism iff F1 is an isomorphism, and an A∞-quasi-isomorphism iff F1

induces an isomorphism on cohomology with respect to r1.

Theorem ([23, 30, 39]). Any A∞-algebra (A, rn) is A∞-quasi-isomorphic to a minimal

A∞-algebra. Such a minimal model for A is unique up to A∞-isomorphisms.

Proof. For the uniqueness property we refer to [23]. To construct the minimal A∞-structure

on Hr1(A) we adapt the proof of [39] to the sign conventions used in the present paper.

Choose a vector space decomposition A = H ⊕B ⊕ L where B = Im(r1) and L is the

preimage of B under r1. It follows that H ∼= Hr1(A). Now choose a homotopy map G of

tilde degree −1 such that 1− πH = r1 ◦G+G ◦ r1 where πH denotes the projection to H.

For example, one may take G to be (r1|L)−1 ◦ πB.

Next we define maps λn : A[1]⊗n → A[1] recursively by λ2 := r2 and

λn := −r2 ◦ (G⊗ 1) ◦ (λn−1 ⊗ 1) − r2 ◦ (1⊗G) ◦ (1⊗ λn−1)

−
∑

i,j≥2,

i+j=n

r2 ◦ (G⊗G) ◦ (λi ⊗ λj) (2.5)

for all n ≥ 3. Then one may verify that rHn := πH ◦ λn defines an A∞-structure on

H ∼= Hr1(A). This structure is related to (A, rn) by the A∞-quasi-isomorphism (Fn) :

(H, rHn ) → (A, rn) where F1 is the inclusion map H →֒ A and Fn := G ◦ λn ◦ F1 for

n ≥ 2.

We remark that in [32] the following refinement of the above theorem is proved: if

the A∞-structure on A is cyclic with respect to a given pairing and if the map G satisfies

a certain mild cyclicity condition, then one may easily construct a minimal model on

Hr1(A) that is cyclic with respect to the pairing induced on cohomology. This makes

the computation of cyclic minimal models very straightforward in many situations. In

particular this holds for the case of open topological string theory on a compact Calabi-Yau

variety X in the large-volume limit, which is described by the bounded derived category of

coherent sheaves on X. The pairing of interest here is of course the topological metric (1.2)

which is cyclic also off-shell.

– 6 –
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On the other hand, in the case of Landau-Ginzburg models the topological metric

is given by (1.3) which is cyclic only on-shell. The need to compute cyclic (and unital)

minimal A∞-structures also for Landau-Ginzburg models hence calls for a more involved

construction. For the rest of this section, the general theory of this construction will be

explained, and in the following section it will be applied to Landau-Ginzburg models.

It turns out that a useful equivalent description of the classical A∞-notions is in terms

of the dualised bar dual, which allows for a non-commutative geometric interpretation in

the sense of Kontsevich [28]: An A∞-algebra (A, rn) gives rise to and can be recovered

from the associated formal non-commutative Q-manifold which is the tensor algebra

BA := T (A[1])∗ =
⊕

n≥0

(A[1]∗)⊗n

together with a derivation Q : BA → BA that satisfies Q2 = 0. If one chooses dual bases

{ei} ⊂ A and {si} ⊂ A[1]∗ (which we fix from now on) then the action of the differential

Q on basis elements,

Q(sa) =
∑

n≥1

Qaa1...an
sa1 ⊗ . . .⊗ san ,

corresponds to the classical higher products rn in such a way that both have the same

coefficients Qaa1...an
,

rn(ea1 ⊗ . . .⊗ ean) = Qaa1...an
ea ,

and the condition Q2 = 0 is equivalent to the defining relations (2.1) of A∞-products.

Moreover, an A∞-morphism (Fn) : A → A′ is equivalently described by a map F : BA′ →

BA where the complicated relations in (2.4) are the same as the condition Q◦F = F ◦Q′. In

this language also the definition of the concatenation of two A∞-morphisms (Fn) : A2 → A1

and (Gn) : A3 → A2 simplifies immensely: it is simply the map BA1 → BA3 given by G◦F .

For the time being we will adopt the point of view that not the A∞-algebra (A, rn) is

the fundamental entity, but rather its dualised bar dual (BA, Q). To simplify notation we

will also often write BA as B, BA′ as B′ etc.

Definition. The complex of non-commutative forms over B is Ω(B) :=
⊕

n≥0B⊗ (B/(C ·

1B))⊗n, where 1B denotes the unit of B which is the tensor product with 1 ∈ C. Here

the projection B → B/(C · 1B) is denoted by d, and by customary abuse of notation the

same symbol is also used for the differential which acts on homogeneous elements of form

degreen n as

d : b0 ⊗ db1 ⊗ . . .⊗ bn 7−→ db0 ⊗ db1 ⊗ . . .⊗ dbn ≡ 1 ⊗ db0 ⊗ db1 ⊗ . . .⊗ dbn .

Definition. The (de Rham or) Karoubi complex is given by

C(B) := Ω(B)/[Ω(B),Ω(B)] (2.6)

together with the differential d induced from Ω(B) which is again written as d.

– 7 –
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We denote homogeneous elements in Cn(B) with representatives b0 ⊗db1 ⊗ . . .⊗dbn as

(b0⊗db1⊗. . .⊗dbn)c ≡ (b0db1 . . . dbn)c with ‘c’ for cyclisation, and where here and from now

on tensor symbols are not explicitly written if their presence is obvious from the context.

The graded commutator in (2.6) is graded with respect to the combination of induced

tilde degree and form degree; for example we have (b0db1db2)c = −(−1)(
eb0+eb1)eb2(db2b0db1)c

where the extra minus sign comes from commuting the two differentials past each other.

Proposition (Poincaré lemma, [28]). H0
d (C(B)) = C and H i>0

d (C(B)) = 0.

With these notions one can construct a complete non-commutative analogue of classical

Cartan calculus. In particular, the contraction iθ and the Lie derivative Lθ for an arbitrary

derivative θ : B → B will be relevant. They are derivatives of form degrees −1 and 0,

respectively, on Ω(B) (and induce suchlike derivatives on C(B)) that are uniquely defined

by iθ(b) = 0, iθ(db) = θ(b), Lθ(b) = θ(b) and Lθ(db) = d(θ(b)) for all b ∈ B.

Given a morphism φ : B1 → B2, its push-forward φ∗ : C(B1) → C(B2) is defined

on homogeneous elements as (b0db1 . . . dbn)c 7→ (φ(b0)d(φ(b1)) . . . d(φ(bn)))c. From these

definitions one may immediately verify that all the usual identities of Cartan calculus hold

in the present setting, too, but we will only need the relations

Lθ = d ◦ iθ + iθ ◦ d , d2 ◦ φ∗ = φ∗ ◦ d1 , LQ2 ◦ φ∗ = φ∗ ◦ LQ1 . (2.7)

Definition. A symplectic form on B is a 2-form

ω = ωab(ds
adsb)c +

∑

n≥3

n−1∑

i=1

ωa1...ai;ai+1...an (sa1 . . . sai−1dsaisai+1 . . . san−1dsan)c (2.8)

in C2(B) such that dω = 0 and det(ωab) 6= 0.

One can prove that the non-degeneracy condition det(ωab) 6= 0 is equivalent to the con-

dition that the map θ 7→ iθω from derivatives on B to 1-forms in C1(B) is an isomorphism.

The following non-commutative-geometric variant of the classical Darboux theorem

will be crucial.

Theorem ([28, 29]). For any symplectic form ω ∈ C2(B) as in (2.8) there exists an auto-

morphism φ : B → B such that φ∗ω = ωab(ds
adsb)c, i. e. φ∗ω is equal to the constant part

of ω.

Proof. Write ω =
∑

i≥0 ωi where ωi has tensor degree i + 2. The closedness condition on

ω translates to its tensor components, dωi = 0 for all i. In particular, the existence of

αi ∈ C1(B) such that ω1 = dα1 with ω̃1 = α̃1 is guaranteed by the Poincaré lemma. Since

ω0 is non-degenerate, there is a unique derivative θ1 that satisfies iθ1ω0 = α1 and is of

tensor degree 1. It follows that θ̃1 = 0 and

Lθ1ω0 = (d ◦ iθ1 + iθ1 ◦ d)ω0 = d(iθ1ω0) = dα1 = ω1 .
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Now one can define a diffeomorphism φ1 : B → B by its action on A[1]∗ as 1− θ1. Then

the transformed symplectic form

ω(1) := (φ1)∗ω = (φ1)∗ω0 +
∑

i≥1

(φ1)∗ωi

= ω0 − ωab

[
(d(θ1(s

a))dsb)c + (dsad(θ1(s
b)))c

]

+ ωab(d(θ1(s
a))d(θ1(s

b)))c +
∑

i≥1

(φ1)∗ωi

= ω0 − Lθ1ω0 + ω1 + O(s⊗4)

= ω0 + O(s⊗4)

has no component of tensor degree 3.

To successively transform away all higher tensor degree components, one may proceed

by induction. Assume that for some k ≥ 2 one has arrived at a symplectic form ω(k−1) =

ω0+
∑

i≥k ω
(k−1)
i with homogeneous tensor degree components ω

(k−1)
i . Because of dω(k−1) =

0 and the Poincaré lemma, one can find αk ∈ C1(B) such that ω
(k−1)
k = dαk. This 1-form

is isomorphic to a derivative θk of tensor degree k that solves iθk
ω0 = αk, and as before

it follows that Lθk
ω0 = ω

(k−1)
k . Then the diffeomorphism φk : B → B defined on A[1]∗ as1− θk pushes ω(k−1) forward to ω(k) := (φk)∗ω

(k−1) which is equal to

(φk)∗ω0 +
∑

i≥k

(φk)∗ω
(k−1)
i = ω0 − Lθk

ω0 + ω
(k−1)
k + O(s⊗(k+3)) = ω0 + O(s⊗(k+3)) .

The Darboux map φ is given by the concatenation of all φk.

To construct the Darboux map for a given symplectic form explicitly, one needs to

have explicit expressions for the 1-forms αk and derivatives θk in the above proof. Both

may be read off ω
(k−1)
k , which in general has the form

k+1∑

m=1

ω(k−1)
a1...am;am+1...ak+2

(sa1 . . . sam−1dsamsam+1 . . . sak+1dsak+2)c .

The 1-form αk is proportional to the contraction of ω
(k−1)
k with the Euler vector field E

which is defined as the unique derivative on B that acts on elements of tensor degree 1 as

the identity, i. e. E(sa) = sa. Hence one has

(k + 2)ω
(k−1)
k = LEω

(k−1)
k = (iEd+ diE)ω

(k−1)
k = d(iEω

(k−1)
k )

so that αk may indeed be taken to be 1
k+2 iEω

(k−1)
k .5 This can be shown to be equal to

2

k + 2

k+1∑

m=1

ω(k−1)
a1...am;am+1...ak+2

(sa1 . . . sak+1dsak+2)c ,

5As this reasoning works for any n-form with n ≥ 1, this is essentially the proof of the Poincaré lemma.
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and we see that the coefficients of αk = αa1...ak+1b(s
a1 . . . sak+1dsb)c are given by

αa1...ak+1b =
2

k + 2

k+1∑

m=1

ω
(k−1)
a1...am;am+1...ak+1b

. (2.9)

Next, to find an explicit expression for the derivative θk, its action is written as θk(s
a) =

θaa1...ak+1
(sa1 . . . sak+1)c. Then one computes

iθk
ω0 = ωab(θk(s

a)dsb)c − ωab(ds
aθk(s

b))c

= ωabθ
a
a1...ak+1

(sa1 . . . sak+1dsb)c

− (−1)eaeb+1(−1)ea(ea1+...+eak+1)ωbaθ
b
a1...ak+1

(sa1 . . . sak+1dsa)c

=
(
1 + (−1)2eaeb

)
ωabθ

a
a1...ak+1

(sa1 . . . sak+1dsb)c

= 2ωabθ
a
a1...ak+1

(sa1 . . . sak+1dsb)c ,

where we write the tilde degree s̃a of sa simply as ã. This calculation is valid under the

assumption (which is always satisfied in our applications to topological string theory) that

ω is homogeneous in tilde degree, which by ω
(k−1)
k = dαk and iθk

ω0 = αk implies that

θ̃k = 0 and hence b̃ = ã1 + . . .+ ãk+1 in θk(s
b) = θba1...ak+1

(sa1 . . . sak+1)c above. Therefore,

the defining equation iθk
ω0 = αk = αa1...ak+1b(s

a1 . . . sak+1dsb)c for θk is solved if one sets

θca1...ak+1
=

1

2
αa1...ak+1bω

bc .

Combining this with (2.9) one arrives at the expression

θca1...ak+1
=

1

k + 2

k+1∑

m=1

ω
(k−1)
a1...am;am+1...ak+1b

ωbc (2.10)

for the components of θk which only depends on the constant part of ω and its recursively

computed (and subsequently cancelled) higher order correction ω
(k−1)
k .

2.2 Cyclicity

The following result explains how the cyclicity conditions (2.3) translate into the formula-

tion in terms of non-commutative geometry.

Proposition. If a 2-form ω is flat, i. e. ω = ωab(ds
adsb)c, then LQω = 0 is equivalent to

the cyclicity conditions

〈ea0 , rn(ea1 ⊗ . . .⊗ ean)〉 = (−1)ea0(ea1+...+ean)〈ea1 , rn(ea2 ⊗ . . .⊗ ean ⊗ ea0)〉

where the pairing 〈 · , · 〉 is defined via 〈ea, eb〉 = (−1)ea+1ωab.
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Proof. LQωab(ds
adsb)c equals

ωab

(∑

n≥1

Qaa1...an

n∑

i=1

(sa1 . . . sai−1dsaisai+1 . . . sandsb)c

+ (−1)ea
∑

n≥1

Qba1...an
(dsasa1 . . . sai−1dsaisai+1 . . . san)c

)

=
∑

n≥1

(
ωabQ

a
a1...an

+ (−1)
eb+1+eb(ea1+···+ean)ωbaQ

a
a1...an

)
(sa1 . . . sai−1dsaisai+1 . . . sandsb)c

=
∑

n≥1

2ωabQ
a
a1...an

n∑

i=1

(sa1 . . . sai−1dsaisai+1 . . . sandsb)c ,

where ωab = (−1)eaeb+1ωba was used together with the fact that Q is of tilde degree +1.

Using the cyclic symmetry one now sees that LQω vanishes iff

ωabQ
a
a1...an

= (−1)(ea1+···+eai)(eai+1+···+ean+eb)ωaai
Qai

ai+1...anba1...ai−1

for all n ≥ 1 and all i ∈ {1, . . . , n}. This holds true precisely iff all higher products rn are

cyclic with respect to the pairing 〈 · , · 〉.

If the 2-form ω is not flat, i. e. if it has non-vanishing components of tensor order

3 or higher as in (2.8), the condition LQω = 0 implies more complicated conditions in-

volving further multilinear forms associated to the higher terms in ω in addition to the

pairing 〈 · , · 〉, see [32]. The fact that strict cyclicity arises only for flat ω = ωab(ds
adsb)c

implies that in general an A∞-isomorphism φ will transform ω to φ∗ω = ωab(dφ(sa)dφ(sb))c
which may often not be flat. This explains why a generic minimal model will not be cyclic

with respect to a given pairing: cyclicity is not an invariant under A∞-isomorphisms.

On the other hand, the above proposition clarifies what the proper A∞-invariant gen-

eralisation of cyclicity is, namely the condition LQω = 0 (without any further assumptions

on ω). Because of the last equation in (2.7), this is indeed invariant under any A∞-

morphism φ as we see from LQ′(φ∗ω) = φ∗(LQω) = 0, where Q′ encodes the A∞-structure

pushed-forward from Q via φ.

While cyclicity is not a natural notion in the general theory of A∞-algebras, it is

still a fundamental condition in open topological string theory. However, if the 2-form ω

is symplectic (as is the case in topological string theory), the Darboux theorem ensures

that one can always construct an A∞-structure that is cyclic with respect to the pairing

associated to the flat component of ω. This is precisely what is wanted.

It is now crucial to recognise that the development of the general theory so far allows

for a more systematic study of cyclicity for a fixed A∞-algebra A. Instead of trying to

construct A∞-maps that are cyclic with respect to a given pairing, one may ask the more

general question: What are all the pairings on A with respect to which a cyclic minimal

model for A exists? This question is answered by the following theorem which reformulates

a result of [29].
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Theorem. A∞-quasi-isomorphism classes in

H := HLQ
(C2(BA)cl,hnd)

classify non-degenerate cyclic structures on minimal models of A up to a change of ba-

sis. Here, C2(BA)cl,hnd denotes the space of d-closed 2-forms that are homologically non-

degenerate.

Proof. Let [ω] ∈ H with representative ω ∈ C2(BA)cl,hnd. Further choose an arbitrary

A∞-quasi-isomorphism F that transports the A∞-structure on A encoded in Q to Hr1(A).

By the minimal model theorem F is unique up to A∞-isomorphisms.

Because ω is d-closed and homologically non-degenerate, the induced form F∗ω on

cohomology is symplectic. Then according to the Darboux theorem one can construct an

A∞-isomorphism φ such that φ∗F∗ω is equal to the flat part of F∗ω. By assumption we have

LQω = 0, and therefore also LQ′(φ∗F∗ω) = 0 by (2.7), where Q′ encodes the A∞-products

(r′n) on Hr1(A) pushed-forward from Q via φ ◦ F . But the condition LQ′(φ∗F∗ω) = 0 is

equivalent to the cyclicity of (r′n) with respect to the pairing associated to the flat part of

F∗ω. Thus we conclude the proof by observing that 2-forms in the image of LQ can never

be homologically non-degenerate.

When this result will be applied to Landau-Ginzburg models in the next section, it

will turn out that in all examples we can recover the topological metric 〈 · , · 〉LG of [17, 25]

as a special case of the construction of H (any other pairing obtained this way is of course

related to 〈 · , · 〉LG by a simple basis transformation). This may be viewed as an alternative

derivation of the topological metric 〈 · , · 〉LG from first principles, i. e. with only the defining

properties of a cyclic, unital and minimal A∞-category assumed. In contrast, the derivation

of 〈 · , · 〉LG in [17, 25] relied on a path integral argument.

To put the above theorem to practical use we need an effective method to compute the

cohomology H. One way to do so is to first compute HQ(C0(B)/C) which is isomorphic

to HLQ
(C2(B)cl) as we will show below. To actually obtain H = HLQ

(C2(BA)cl,hnd) one

then has to check which elements in HQ(C0(B)/C) lead to non-degenerate elements in

HLQ
(C2(B)cl). As we will see in a moment, this second step is very simple in practice.

In order to understand the isomorphism HQ(C0(B)/C) ∼= HLQ
(C2(B)cl), observe that

0 −→ [B,B]
ι

−→ B+
π

−→ B+/[B,B] = C0(B)/C −→ 0

is a short exact sequence of complexes with differentials (induced by) LQ, where ι and π

are inclusion and projection maps, respectively, and B+ :=
⊕

m≥1(A[1]∗)⊗m. This gives

rise to a long exact sequence in LQ-cohomology,

. . . −→ HLQ
(B+)

π∗−→ HLQ
(B+/[B,B])

δ
−→ HLQ

([B,B])
ι∗−→ HLQ

(B+) −→ . . . ,

where the connecting homomorphism δ acts as

[(f)c] 7−→ [Q(f)] (2.11)
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and square brackets denote equivalence classes in LQ-cohomology in the last expression.

But according to [29, Prop. 7.4.1], the complex (B+, LQ) is acylic, HLQ
(B+) = 0, and

therefore δ is an isomorphism. Because B+/[B,B] = C0(B)/C by definition, and since LQ
acts as Q on 0-forms we really have δ : HQ(C0(B)/C) ∼= HLQ

([B,B]). Finally, there is

another isomorphism [11, Prop. 5.5.1] between [B,B] and C2(B)cl which is given by

[f, g] 7−→ (dfdg)c . (2.12)

Notice that the isomorphism HQ(C0(B)/C) ∼= HLQ
(C2(B)cl) is completely explicit.

Furthermore, it follows from the above construction that the components of elements in

HLQ
(C2(B)cl) with lowest tensor degree are the images of the lowest tensor degree compo-

nents of elements in HQ(C0(B)/C). In particular, to check whether [ω] = [ω0 +ω1 + . . .] ∈

HLQ
(C2(B)cl) is non-degenerate (i. e. whether ω0 is non-degenerate) one only has to con-

sider the component f1 of tensor degree 1 of its pre-image [(f1 + f2 + . . .)c].

As a result, the main part of the computation of the space H is to compute the

cohomology HQ(C0(B)/C). But because of HQ(C0(B)/C) ∼= HQ(
⊕

m≥1[(A[1]∗)⊗m]c) this

can be determined using the spectral sequence [38] coming from the descending filtration

Fn(
⊕

m≥1[(A[1]∗)⊗m]c)i = (
⊕

m≥n[(A[1]∗)⊗m]c)i

which converges to HQ(C0(B)/C), and where the degree i on the right-hand side is induced

from the tilde grading on A[1].

A direct calculation shows that this spectral sequence simply computes HQ(C0(B)/C)

tensor order by tensor order, i. e. the sum over the r-th terms in the spectral sequence is

equal to HQ(C0(B)/C) up to elements of tensor degree r+ 1 or higher. In the next section

we will see an explicit example of such calculations.

Summary: explicit construction of cyclic minimal models. In conclusion, starting

from an arbitrary A∞-algebra (A, rn) we have seen in this section how to find all non-

degenerate pairings on H = Hr1(A) with respect to which cyclic minimal models of (A, rn)

exist, and furthermore these cyclic A∞-structures on H can be explicitly constructed.

The case of interest for open topological string theory is when (A, rn) is an off-shell

DG algebra, i. e. rn = 0 for all n ≥ 3.6 For this case we summarise the explicit construction

of cyclic minimal models for A as follows.

(i) Compute HQ(C0(BA)/C): to do this, write Q = Q1 + Q2 with Qi dual to ri and

recursively solve the equations

Q1(f1) = 0 , Q2(fi)c = −Q1(fi+1)c , i ≥ 1 ,

for fi ∈ (A[1]∗)⊗i. Then [(f1 + f2 + . . .)c] is non-trivial in HQ(C0(BA)/C).

(ii) Compute C2(BA)cl using the isomorphisms (2.11), (2.12):

HQ(C0(BA)/C) ∋ [(f1 + f2 + . . .)c] 7−→ [(ω0 + ω1 + . . .)c] ∈ HLQ
(C2(BA)cl) .

6This is not really a special case as there exists an “anti-minimal model” theorem [36]: Any A∞-algebra

is A∞-quasi-isomorphic to a DG algebra.
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(iii) Obtain H = HLQ
(C2(BA)cl,hnd) by discarding those elements [ω] = [(ω0+ω1+. . .)c] ∈

HLQ
(C2(BA)cl) for which the matrix (ωab) in ω0 = ωab(ds

adsb)c is not invertible when

restricted to r1-cohomology.

(iv) Construct an arbitrary (possibly non-cyclic) minimal model (H = Hr1(A), r′n) with

A∞-quasi-isomorphism (F ′
n) : H → A using (2.5).

(v) Compute the symplectic form F ′
∗ω ∈ C2(BH).

(vi) Construct the Darboux map φ =
∏
i(1 − θi) from (2.10) as the symplectomorphism

(BH , Q
′, F ′

∗ω) → (BH , Qmin, φ∗F
′
∗ω) where Qmin encodes the A∞-structure pushed-

forward from Q′ via φ.

(vii) Obtain the A∞-products rmin
n pertaining to Qmin from (2.4), i. e.

rmin
n =

∑

i≥0,j≥1,
i+j≤n

φn−j+1◦
(1⊗iH ⊗ r′j ⊗ 1⊗(n−i−j)

H

)
−
n−1∑

p=1

∑

1≤i1,...,ip≤n,

i1+...+ip=n

rmin
p ◦

(
φi1 ⊗ . . . ⊗ φip

)
.

By construction, the higher products rmin
n are cyclic with respect to the pairing

defined by 〈ea, eb〉 = (−1)ea+1ωab.

The above algorithm can be implemented universally on a computer to construct cyclic

minimal models for any DG algebra (independent of whether it is Z2- or Z-graded). The

only input necessary is the algebraic structure in terms of the numbers Qab , Q
a
bc. Then

if HQ(C0(BA)/C) is computed up to tensor degree N in step (i), the algorithm produces

a minimal model which is guaranteed to be cyclic up to order N + 1. While elements

in HQ(C0(BA)/C) will typically be infinite sums, the cyclic A∞-products rmin
n will often

vanish for sufficiently large n. In this case the algorithm produces a full cyclic minimal

model after a finite number of steps.

We close this section with a remark that will not be relevant for the rest of the paper.

As discussed above, the approach here is to find all cyclic pairings and then recover the

one of interest in the concrete application. For the case of Landau-Ginzburg models one

may also try to directly find minimal A∞-products that are cyclic with respect to the

topological metric 〈 · , · 〉LG. By the Darboux theorem and the non-commutative-geometric

characterisation of cyclicity this amounts to finding higher order terms such that

ω = ωab(ds
adsb)c +

∑

n≥3

n−1∑

i=1

ωa1...ai;ai+1...an (sa1 . . . sai−1dsaisai+1 . . . san−1dsan)c

with ωab = (−1)ea+1〈ea, eb〉LG is both d-closed and LQ-closed. As explained in [32] the

latter condition is equivalent to the existence of multilinear maps 〈 · , . . . , · 〉i,n : A⊗n → C
corresponding to ωa1...ai;ai+1...an that obey certain compatibility conditions with the DG

structure on A. Let D be a matrix factorisation describing a brane in a Landau-Ginzburg

model with potential W in N chiral fields. Then by direct computation one can verify that
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in this case the multilinear forms defined by

〈ea1 , . . . , ean〉
D
1,n

=

∮
−dx1 . . . dxN

(2πi)N
∏N
i=1 ∂iW

str

(N−n+3∑

i1=1

N−n+4∑

i2=i1+1

. . .

N∑

in−2=in−3+1

· (−1)(N+n)|ea1 |+
Pn−2

j=1 (ij+ε
[n]
j )|eaj+1 |+

Pn−2
j=1 ij+ε

[n]

· ea1
∂D

∂x1
. . .

∂D

∂xi1−1

∂ea2
∂xi1

∂D

∂xi1+1
. . . . . .

∂D

∂xin−2−1

∂ean−1

∂xin−2

∂D

∂xin−2+1
. . .

∂D

∂xN
ean

)

with ε
[n]
j := N+n+j, ε[1] := N and ε[n+1] := ε[n]+N+n+1, give rise to higher corrections

to ωab(ds
adsb)c such that LQω = 0 holds off-shell. Moreover, in explicit examples one can

check that the thus constructed ω is also d-closed for many choices of branes D, but not

for every brane; it is unclear what general property of D may prevent the above ω from

being d-closed in the latter case. If dω 6= 0, additional corrections to ωab(ds
adsb)c would

have to be found, while in the former case one can immediately construct cyclic minimal

models without having to compute HQ(C0(BA)/C) first. However, in the present paper

we only use the construction detailed in the above algorithm as it is much more generally

applicable.

3 Application to Landau-Ginzburg models

We will now apply the results of the previous section to construct cyclic, unital and minimal

A∞-products for Landau-Ginzburg models. This establishes explicitly the full structure of

open topological string theory for such models, and it allows to algorithmically compute

effective superpotentials.

D-brane systems in twisted Landau-Ginzburg models with superpotential W are de-

scribed by matrix factorisations D of W , and on-shell open string states of such branes

correspond to the cohomology of the BRST operator [D, · ]. We are interested in endowing

BRST cohomology with the proper cyclic, unital and minimal A∞-structure. Hence, for a

given matrix factorisations D (which may of course correspond to an arbitrary superposi-

tion of branes) of rank r, we set7

A := Mat(C[X], 2r) , m1 := [D, · ] , m2 := matrix multiplication.

This is the off-shell DG algebra to which the construction explained in the previous sec-

tion can be applied to find all cyclic A∞-structures on cohomology, i. e. on the boundary

chiral ring.

We will start off lightly in subsection 3.1 where we will carry out only steps (i)–(iii),

and only to first order, of the algorithm in subsection 2.2 for a number of examples. This

will allow us to see how the topological metric of [17, 25] may be recovered from the

systematic approach followed in the present paper. Then we will give details on how to

7Recall that the relation between the products rn and mn = σ−1◦rn◦σ⊗n was explained at the beginning

of section 2.1.
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carry out step (i) to all orders for A-type minimal conformal models, i. e. how to compute

HQ(C0(B)/C). Finally, in subsection 3.2 examples of the calculation of all amplitudes and

effective superpotentials will be presented by executing the full algorithm.

3.1 First examples

Example 1: transposition branes. We consider the Landau-Ginzburg potential xn +

yn and its matrix factorisation D = ( 0 (xn+yn)/(x−ηy)
x−ηy 0 ), where η is an n-th root of −1,

see [1]. Then BRST cohomology is simply given by its basis representatives ei := ( y
i 0
0 yi )

for i ∈ {0, . . . , n − 2}. Denoting the dual basis by si as usual, step (i) is trivial to first

tensor order since Q1(s
i) = 0 is the same as r1(ei) = [D, ei] = 0.

To carry out step (ii) one has to know the action of Q2, or dually the full multiplication

structure of the off-shell DG algebra A. However, we are at the moment only interested to

compute in first tensor order, and from ei = ekei−k = ei−kek we immediately see that

Q(si) = Q2(s
i) = −

i∑

k=0

sksi−k =





−

i/2−1∑

k=0

[sk, si−k] − 1
2 [si/2, si/2] + . . .

−

(i+1)/2∑

k=0

[sk, si−k] + . . .

where the two cases are for i even or odd, respectively, and ‘+ . . .’ denotes the contribution

from basis elements other than sk, i. e. from elements that are dual not to ek but to the

remaining basis elements of A. These contributions can straightforwardly be calculated,

but they are not relevant in first order. Thus we have already computed the map (2.11)

from HQ(C0(B)/C) to HQ([B,B]) in step (ii). To complete this step we apply the iso-

morphism (2.12) and find that the flat part of the form ω = ωab(ds
adsb)c ∈ C2(BHr1 (A)) is

given by

(ωab) =




λ0 λ1 · · · λn−3 λn−2

λ1 λn−3 λn−2
... λn−3

λn−3 λn−2

λn−2




(3.1)

with arbitrary complex numbers λi. Step (iii) of the algorithm is now simply to note that

this matrix is non-degenerate (and therefore gives rise to a symplectic form ω) iff λn−2 6= 0.

Furthermore by setting λ0 = . . . = λn−3 = 0 we precisely recover the on-shell topological

metric 〈 · , · 〉LG in this example.

Example 2: linear matrix factorisations. Let us next work out the case of so-called

linear matrix factorisations of the cubic Landau-Ginzburg potential W = x3
1 + x3

2 + x3
3. As
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explained in [10], for any third root η of −1 there are matrices

α0 =




x1 x2 − ηx3 0

0 x1 x2 + x3

x2 + (η − 1)x3 0 x1




α1 =




x1 (η − 1)x2 + x3 0

0 x1 (η − 1)x2 + (η − 1)x3

(η − 1)x2 − ηx3 0 x1




α2 =




x1 −ηx2 + (η − 1)x3 0

0 x1 −ηx2 − ηx3

−ηx2 + x3 0 x1




with the property that ασ(0)ασ(1)ασ(2) = W1 for any permutation σ ∈ S3. This gives rise

to a matrix factorisation D = ( 0 α2
α0α1 0 ). Now we apply the method of [6] to compute

explicit basis representatives of BRST cohomology H. The result is that the even and odd

subspaces of H are both four-dimensional and we denote their basis elements e1, . . . , e8
(we do not display the explicit matrices here, but they are included in the tex-file of this

document). Upon working out the multiplication structure of H we find that

Q2(s
5) = −[s1, s5] +

η + 1

η
[s2, s6] −

2η − 1

η
[s3, s7] − η[s4, s8] − [s4, s6] + . . . .

It follows that the flat part of the 2-form ω ∈ C2(BH) corresponding to (s5 + . . .)c ∈

C0(BA)/C is given by

(ωab) =




−1 0 0 0

0 η+1
η 0 0

0 0 −2η−1
η 0

0 −1 0 −η

1 0 0 0

0 −η+1
η 0 1

0 0 2η−1
η 0

0 0 0 η




.

It is easy to verify that (−1)ea+1ωab = (1+ 5
1+3η2 )〈ea, eb〉LG and hence we again recover the

topological metric.

Example 3: minimal conformal models. As a third example we consider arbitrary

branes in Landau-Ginzburg models with potential −xn. As any matrix factorisation of −xn

is isomorphic to a direct sum of the simple factorisations Da := ( 0 xn−a

−xa 0 ), it is sufficient

to only work out the case of the matrix factorisations Da⊕Db for any a, b ∈ {1, . . . , n−1}.
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If we choose BRST cohomology to be represented as

H = H0
a ⊕H1

a ⊕H0
ab ⊕H1

ab ⊕H0
ba ⊕H1

ba ⊕H0
b ⊕H1

b ,

H0
a = C{e(a,+)

i =

(
xi 0

0 xi

)∣∣∣ 0 ≤ i ≤ min(a− 1, n − a− 1)

}
,

H1
a = C{e(a,−)

i =

(
0 xn−2a+i

xi 0

)∣∣∣ max(2a− n, 0) ≤ i ≤ a− 1

}
,

H0
ab = C{e(ab,+)

i = xi

(
xa−b 0

0 1

) ∣∣∣ max(b− a, 0) ≤ i ≤ min(b− 1, n − a− 1)

}
,

H1
ab = C{e(ab,−)

i = xi

(
0 xn−a−b

1 0

)∣∣∣ max(a+ b− n, 0) ≤ i ≤ min(a− 1, b− 1)

}

and define da = dimH0
a , dab = dimH0

ab, it is straightforward to compute the action of Q2

on the dual basis elements. In particular, one finds that Q2(s
a−1
(a,−) + sb−1

(b,−)) is equal to

da∑

i=1

[
sa−i(a,−), s

i
(a,+)

]
+

db∑

j=1

[
sb−j(b,−), s

j
(b,+)

]

+

dab−1∑

k=0

([
s
min(a−1,b−1)−k
(ab,−) , s

max(a−b,0)+k
(ba,+)

]
+
[
s
max(a+b−n,0)+k
(ba,−) , s

min(b−1,n−a−1)−k
(ab,+)

])

+ . . . (3.2)

where ‘+ . . .’ again denotes contributions that do not affect the first order result. From (3.2)

one sees that the flat part of the associated symplectic form on cohomology is given by




0 +1
...

−1 0

0 0 0

0 0

0 +1
...

−1 0

0

0

0 +1
...

−1 0

0 0

0 0 0

0 +1
...

−1 0




where the upper-left and lower-right blocks have sizes 2da and 2db, respectively, and the

two blocks in the middle both have size 2dab. Again, this is the form the topological

metric 〈 · , · 〉LG takes in this choice of basis. If we do not start out with the element

– 18 –



J
H
E
P
0
7
(
2
0
0
9
)
0
0
5

[sa−1
(a,−)+s

b−1
(b,−)+. . .] ∈ HQ(C0(B)/C) but more generally with [

∑
j λj(s

a−1−j
(a,−) +sb−1−j

(b,−) )+. . .],

we obtain a symplectic form whose blocks are similar to (3.1).

We remark that all of the examples studied — most of which are not described here

for brevity — allow to recover the topological metric 〈 · , · 〉LG in the general first principle

approach followed here. Also, all examples share the feature that the flat part of the

symplectic form always comes from one single element [sa+ . . .] ∈ HQ(C0(B)/C), where sa

is dual to the basis element ea of highest polynomial degree. If there are fermionic elements

in the spectrum, ea is always one of those.

Computing HQ(C0(B)/C). So far we have only computed the space HQ(C0(B)/C)

in step (i) to first order, but to compute amplitudes one needs more than that. In con-

crete examples we will use a computer implementation of the “perturbative” calculation

of HQ(C0(B)/C) and all the other steps of our algorithm. Before this will be discussed in

the next subsection, we will now illustrate the computation of HQ(C0(B)/C) in the case

of A-type minimal conformal models.

We consider the matrix factorisation Da = ( 0 xn−a

−xa 0 ) of −xn. Then if a ≥ n a basis

for the off-shell DG algebra A = Mat(C[x], 2) is given by

e
(+)
i =

(
xi 0

0 xi

)
, e

(L,+)
i =

(
0 0

0 xi

)
,

e
(−)
i =

(
0 xi

−x2a−n+i 0

)
, e

(L,−)
i =

(
0 0

xi 0

)
(3.3)

with i ≥ 0.8 We also define e
(B,±)
i = e

(±)
n−a−1+i as a basis for the image of r1 = [Da, · ] and

note that C{e
(±)
i }i∈{0,...,n−a−1}

∼= Hr1(A).

From example 3 above we know that the element sn−a−1
(−) dual to e

(−)
n−a−1 corresponds to

the topological metric. Therefore, we now wish to construct an element [f ] inHQ(C0(B)/C)

whose component of tensor order 1 is equal to sn−a−1
(−) . For this it will be sufficient to know

that Q1(s
i
(B,±)) = si−1

(L,∓) and

Q2(s
i
(−)) =

i∑

j=0

(
si(−)s

i−j
(+) − si−j(+)s

j
(−) + sj(−)s

i−j
(L,+)

)
. (3.4)

These actions follow directly from the explicit choice of basis (3.3). From (3.4) we see that

f1 := sn−a−1
(−) is a Q-cohomology representative only to first tensor order:

Q(sn−a−1
(−) )c = Q2(s

n−a−1
(−) )c =

n−a−1∑

j=0

(sj(−)s
n−a−1−j
(L,+) )c .

To obtain a representative of Q-cohomology also to second tensor order, one observes that

n−a−1∑

j=0

sj(−)s
n−a−1−j
(L,+) = Q1

( n−a−1∑

j=0

sj(−)s
n−a−j
(B,−)

)
=: −Q1(f2)

8In the case a ≤ n − a one may instead choose the basis ( xi 0
0 xi

), ( 0 −x2a−n+i

xi 0
), ( xi 0

0 0
), ( 0 xi

0 0
), and the

subsequent argument will apply in the exact same way.
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and henceQ = Q1+Q2 acting on f1+f2 gives zero up to the term −Q2(
∑n−a−1

j=0 sj(−)s
n−a−j
(B,−) ),

which is of tensor degree 3. A short calculation shows that this term is equal to the Q1-

image of

−f3 := −
n−a−1∑

j1=0

j1∑

j2=0

(sj2(−)s
j1−j2+1
(B,−) sn−a−j1(B,−) )c −

n−a−1∑

j1=0

n−a−1∑

j2=0

(sj1(−)s
j2
(−)s

2n−2a−j1−j2
(B,−) )c .

Thus f1 + f2 + f3 is a Q-cohomology representative up to tensor order 3. Increasingly

tedious computations reveal that this correction process, one tensor order at a time, can

be continued. For example, the next order is given by

f4 =
n−a−1∑

j1=0

j1∑

j2=0

j2∑

j3=0

(
sj3(−)s

j2−j3+1
(B,−) sj1−j2+1

(B,−) sn−a−j1(B,−)

)

c

+

n−a−1∑

j1=0

n−a−1∑

j2=0

2n−2a−j1−j2−1∑

j3=0

(
sj1(−)s

j2
(−)s

j3+1
(B,−)s

2n−2a−j1−j2−j3
(B,−)

)
c

+

n−a−1∑

j1=0

n−a−1∑

j2=0

j1∑

j3=0

(
sj3(−)s

j1−j3+1
(B,−) sj2(−)s

2n−2a−j1−j2
(B,−)

)
c

+

n−a−1∑

j1=0

n−a−1∑

j2=0

n−a−1∑

j3=0

(
sj1(−)s

j2
(−)s

j3
(−)s

3n−3a−j1−j2−j3
(B,−)

)
c
.

One may now go on to identify the general structure of these tensor components and obtain

all higher order corrections to sn−a−1
(−) , and also for sn−a−1−j

(−) for all j ∈ {1, . . . , n − a −

1}. Similar computations, but somewhat more involved and heavier in notation, allow to

construct HQ(C0(B)/C) also for multiple brane system such as the superposition Da⊕Db

of example 3. This then concludes the hardest part of our algorithm to construct cyclic,

unital and minimal A∞-products for any object in MF(xn). However, we refrain from

providing more technical details here and instead now go on to use the full algorithm to

compute effective superpotentials.

3.2 Amplitudes and effective superpotentials

The algorithm of subsection 2.2 can be implemented on a computer to construct all cyclic

minimal models for any DG algebra A if its structure constants are provided as input. In

the case of Landau-Ginzburg models not even that is necessary, it suffices to specify the

matrix factorisation D describing the boundary sector of interest. We then add a step (0)

to our algorithm which computes an explicit basis of [D, · ]-cohomology as explained in [6]

and furthermore constructs from this an off-shell basis up to a given polynomial degree.

This basis can always be chosen to be compatible with the decomposition A = H ⊕B ⊕L

as in the proof of the minimal model theorem. In particular, this also allows to construct

the homotopy or propagator G as an “inverse” to [D, · ] for any matrix factorisation in

any Landau-Ginzburg model. We also note that the general construction of cyclic minimal

models applies equally well to Z2- and Z-graded matrix factorisation. To compute the
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examples in this section the complete algorithm has been implemented using the computer

algebra system Singular [13].

The first example that we discuss in some detail to illustrate the procedure is that

of the matrix factorisation D = ( 0 x2

x3 0
). The effective superpotential Weff pertaining to

this brane has been computed by a different method in [18], so we will have something to

compare our result to.

For the basis of BRST cohomology H we make the choice

e1 =

(
1 0

0 1

)
, e2 =

(
x 0

0 x

)
, e3 =

(
0 −1

x 0

)
, e4 =

(
0 −x

x2 0

)
.

As we know from our previous discussion, we now want to compute a flat symplectic form on

BRST cohomology that comes from an element of C0(BA)/C whose first tensor component

is dual to the fermionic open string state e4. Feeding this data into our algorithm and

computing up to tensor order 4, the result of steps (i)–(iii) is a 2-form ω ∈ C2(BA) which is

a sum of 1089 terms. Those terms of the flat part of ω that will survive the push-forward

to H in step (v) are simply given by

ωab(ds
adsb)c , (ωab) =




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


 (3.5)

and this of course corresponds precisely to the topological metric 〈 · , · 〉LG. We will not

write out the remaining 1087 terms of ω here. Instead, we go on to step (iv) and compute

a minimal model with A∞-products r′n on H. The non-vanishing coefficients are

Q′1
11 = −1 , Q′1

223 = −1 , Q′1
2244 = +1 , Q′1

44444 = −1 .

Q′2
12 = −1 , Q′2

224 = −1 , Q′3
2444 = +1 ,

Q′3
13 = −1 , Q′3

234 = −1 , Q′1
3444 = +1 ,

Q′4
14 = −1 , Q′3

243 = −1 , Q′1
4344 = +1 ,

Q′2
21 = −1 , Q′3

324 = +1 , Q′3
4442 = −1 ,

Q′4
23 = −1 , Q′1

343 = −1 , Q′1
4443 = +1 ,

Q′3
31 = +1 , Q′4

424 = +1 , Q′2
4444 = +1 ,

Q′4
32 = +1 , Q′3

432 = +1 ,

Q′2
33 = −1 , Q′1

433 = −1 ,

Q′4
41 = +1 , Q′2

434 = −1 ,

Q′4
442 = −1 , (3.6)

Comparing this with (3.5) we realise that the A∞-structure (r′n) is not cyclic. As explained

in the previous section, this is generically expected and indeed the main point of the

present paper.
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The non-cyclicity of the products in (3.6) is consistent with the fact that the push-

forward F ′
∗ω of ω under the A∞-quasi-isomorphism (F ′

n) : H → A obtained in step (v)

is not flat.9 On the other hand, the symplectic form φ∗F
′
∗ω which we obtain from the

construction of the Darboux map φ in step (vi) is flat (and of course equal to (3.5)). The

non-vanishing coefficients of φ are found to be

φii = 1 , φ1
24 = −

1

3
, φ1

42 =
2

3
, φ3

44 =
1

3
,

and from this and (3.6) we can finally obtain the A∞-products rmin
n in step (vii). Their

coefficients are

Q1
11 = −1 , Q1

223 = −2/3 , Q1
2244 = +4/9 , Q1

44444 = −11/27

Q2
12 = −1 , Q2

224 = −2/3 , Q1
2424 = −2/9 ,

Q3
13 = −1 , Q1

232 = +1/3 , Q1
2442 = +2/9 ,

Q4
14 = −1 , Q3

234 = −2/3 , Q3
2444 = +4/9 ,

Q2
21 = −1 , Q2

242 = −1/3 , Q1
3334 = +5/9 ,

Q4
23 = −1 , Q3

243 = −2/3 , Q1
3444 = +5/9 ,

Q3
31 = +1 , Q1

322 = −2/3 , Q1
4224 = +4/9 ,

Q4
32 = +1 , Q3

324 = +1/3 , Q1
4242 = −2/9 ,

Q2
33 = −1 , Q1

334 = −1/3 , Q3
4244 = −2/9 ,

Q4
41 = +1 , Q3

342 = +2/3 , Q1
4344 = +5/9 ,

Q1
343 = −1 , Q1

4422 = +4/9 ,

Q2
344 = −1/3 , Q3

4424 = +2/9 ,

Q2
422 = −2/3 , Q1

4434 = +5/9 ,

Q3
423 = −1/3 , Q3

4442 = −4/9 ,

Q3
432 = +2/3 , Q2

4444 = +5/9 ,

Q1
433 = −1/3 ,

Q2
434 = −1 ,

Q2
443 = −1/3 , (3.7)

and from this we see that (rmin
n ) is indeed cyclic and unital. We can also check that

(H, rmin
n ) is A∞-quasi-isomorphic to (A, r1, r2) which means that (3.7) is the final result

and no higher order products are left to be computed.

Thus we also have determined all the topological string theory amplitudes (1.1) in this

example as they are always obtained from the coefficients Qaa1...an
by lowering their upper

index with the topological metric:

Qa0a1...an =
∑

a

〈ea0 , ea〉LGQ
a
a1...an

.

9We do not give F ′ explicitly here because this would also make it necessary to explicify our choice of

the (rather large) off-shell basis.
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To obtain the effective superpotential, all that is left to do is to sum up (3.5) and (3.7)

according to

Weff =
∑

n≥2

1

n+ 1

〈
ea0 , r

min
n (ea1 ⊗ . . .⊗ ean)

〉
LG

ua0ua1 . . . uan

=
∑

n≥2

1

n+ 1
(−1)ea0+1ωa0aQ

a
a1...an

ua0ua1 . . . uan =
∑

n≥2

1

n+ 1
Qa0a1...an ua0ua1 . . . uan

and we find

Weff =
1

3
u3

3 +
5

6
u2

3u
2
4 −

5

9
u3u

4
4 +

11

162
u6

4 .

After the field redefinition u3 7→ u3 + 2
3u

2
4 and a global rescaling by 1

5 , this is precisely the

same result as in [18].

Our algorithm may in the same way be applied to any other matrix factorisation to

obtain amplitudes and superpotentials. Two further simple examples for the latter are

Weff

∣∣
( 0 x

2

x
2 0

) = u3u
2
4 −

1

3
u3

3u4 −
1

54
u5

3 ,

Weff

∣∣
( 0 x

3

x
3 0

) = u2
4u6 + u4u

2
5 − u4u5u

2
6 −

1

3
u3

5u6 +
1

6
u4u

4
6 −

1

12
u2

5u
3
6 +

5

108
u5u

5
6

in a suitable choice of basis.

As a final example we use our method to compute the effective superpotential for the

matrix factorisation 


x 0

0 x2

x3 0

0 x2




which describes the superposition of two branes. If we choose the basis

e1 =




1

0

1

0


 , e2 =




0

x

0

x


 , e3 =




0

1

0

1


 ,

e4 =




0 0

x 0

0 0

1 0


 , e5 =




0 1

0 x

0 x

0 0


 , e6 =




0 0

0 −x

0 0

0 x


 ,

e7 =




0 0

0 −1

0 0

0 1


 , e8 =




0 −1

0 0

0 x

0 0


 , e9 =




0 0

−1 0

0 0

x 0


 ,

e10 =




−1 0

0 0

x2 0

0 0
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and construct a cyclic, unital A∞-structure starting from s6 + s10 ∈ C0(B)/C, we find

113 non-vanishing coefficients Qaa1...an
from which we immediately obtain all amplitudes

Qa0...an . Summing up these amplitudes we arrive at the expression

Weff = u6u
2
7 + u7u8u9 + u6u8u9u10 + u8u9u

2
10 −

1

3
u3

6u7 −
1

3
u2

6u8u9 −
1

45
u5

6 +
1

5
u5

10

− u4u5u
2
10 + u4u5u6u10 − u2u5u8u10 + u2u4u8u10 +

1

3
u2u4u6u8

−
1

3
u2u5u6u9 −

2

3
u4u5u

2
6

for the effective superpotential in this example.

Conclusion. In this paper we have shown how to put to use the underlying A∞-structure

of open topological string theory in the case of Landau-Ginzburg models: treated carefully,

it allows to compute amplitudes and effective superpotentials algorithmically for any ma-

trix factorisation. The main step was to identify the correct cyclic, unital and minimal

A∞-structure since we saw that a naive construction of minimal models generically pro-

duces non-cyclic products for such theories. Reformulating the problem in terms of non-

commutative geometry then allowed to treat it much more generally and obtain a theorem

whose proof explicitly constructs all cyclic minimal models for any A∞-algebra. We imple-

mented this general algorithm on a computer and then applied it to matrix factorisations.

Apart from the actual computation of amplitudes, this approach also offers an alternative,

path-integral-free derivation of the topological metric in open topological Landau-Ginzburg

models.
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